
Int. J. Heof Moss Transfer. Vol. 30, No. 6, pp. I I I l-1 118, 1987 cn317-9310/87 53.00+0.00 

Printed in Great Britain 0 1987 Pcrgamon Journals Ltd. 

Similarity solutions for laminar forced convection 
heat transfer from wedges to fluids of any 

Prandtl number 
HSIAO-TSUNG LINt and LI-KU0 LIN 

Department of Chemical Engineering, National Central University, Chung-Li, Taiwan 32054, Republic of China 

(Receioed 16 September 1986) 

Abstract-This paper proposes a similarity solution method that provides very accurate solutions for 
laminar forced convection heat transfer from either an isothermal surface or a uniform-flux boundary to 
fluids of any Prandtl number. In this work, we demonstrate the similarity solution method with isothermal 
and uniform-flux wedges as illustrative examples. This method is based on the introduction of a parameter 
I = (Pr Re)“‘/( 1 + Pr) ‘I6 to properly define the similarity variables. The resulting similarity equations are 
simple in form and can be readily integrated using the Runge-Kutta scheme to give solutions that are 
almost identical to the reported exact solutions over the range of vanishingly small Prandtl numbers to 
infinity. A simple correlation equation for any wedge and any Prandtl number is also presented. This 

solution method is particularly valuable for the cases where exact solutions are not available. 

1. INTRODUCTION 

LAMINAR forced convection heat transfer of incom- 
pressible Falkner-Skan flows from an isothermal 
wedge has been studied very extensively [l-22]. 
Exact solutions of the transformed similarity energy 
equation were obtained by Pohlhausen [ 1 J and Eckert 
[2] for fluids which have Prandtl numbers in the 
range 0.1 < Pr < 15. The exact integral equation can 
be calculated approximately by a series expansion of 
the stream function or of the streamwise velocity 
component. Lighthill [3] approximated the velocity 
profile in the thermal boundary layer as a linear 
function of the transverse distance. Lighthill’s analysis 
is asymptotically exact for the case of extremely large 
Prandtl number. To obtain an accurate solution for 
finite values of Prandtl number, Spalding [4] extended 
Lighthill’s approximation by taking account of the 
quadratic term which describes the curved profile. 
Further extensions were developed [S-S] by using a 
more precise stream function in the thermal boundary 
layer to provide accurate solutions for fluids in 
a wider range of Prandtl numbers. An improved 
Lighthill’s analysis has also been given by Chao [9]. 
Asymptotic expansions of heat transfer rate for very 
large [lo-123 and very small [lo, 13-201 Prandtl 
numbers have also been reported. 

In spite of the extensive studies into this problem, 
there is still a need for a simple solution method that 
will give very accurate solutions for fluids of any 
Prandtl number, especially for the uniform-flux cases. 
The object of this work is to introduce. a similarity 
solution method that provides exact solutions over 
the entire range of Prandtl number from vanishingly 

tTo whom correspondence should be addressed. 

small to infinity for wedges of various configurations 
with isothermal or uniform-flux surfaces. This solu- 
tion method can be applied as well to other forced 
convection heat transfer problems. 

We propose a parameter i = (PrRe)“*/(l + Pr)“, 
where n = l/4 for the special case of separated wedge 
flow (wedge factor b = -0.198838) and n = l/6 for 
other cases, to properly define the similarity variable, 
the reduced stream function, and the dimension- 
less temperature for the uniform-flux case. These 
dimensionless variables lead to a single set of similarity 
boundary-layer equations which can be integrated 
readily by employing a Runge-Kutta scheme for any 
/I and Pr. The resulting solutions over the range of 
Pr = 10m4 to co are almost identical to the exact 
solutions. Moreover, Nusselt number is proportional 
to Pr113 and Prllz for very large and small Prandtl 
numbers, respectively. For the special case of separ- 
ated wedge flow, the present results also indicate 
that Nu is proportional to Pr’14 as Pr -+ co [6]. 

2. ANALYSIS 

The boundary-layer equations for laminar, incom- 
pressible fluid flow over a wedge of angle nfi, with 
negligible dissipation and body force, are well known 
as 

au+!?,0 
ax ay 

au au du ah 
u-++-=uu,~+~- 

ax ay dx ay2 

aT aT d2T 
Uz+vdy=adyZ. 
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NOMENCLATURE 

c constant Y coordinate normal to the wedge 
C, local friction coefficient surface. 
co asymptotic value of Fin/A for Pr + 0 

r”- 

asymptotic value of Nu/A for Pr -+ co Greek symbols 
reduced stream function, Y&xl) thermal diffusivity 

h local heat transfer coefficient ; angle factor of the wedge 
k thermal conductivity similarity variable, (y/x)A 
m B/(2 - B) ;I dimensionless temperature, 
I? exponent (T- T,)/(T, - T,) for isothermal 
Nn local Nusselt number, h/k wedge, and (T- T~)/(q~~/k) for 
Pr Prandtl number, v/u uniform-flux wedge 

41. wall heat flux I cr Re”’ 
Re local Reynolds number, u,x/v p viscosity 
T temperature V kinematic viscosity 

T, wall temperature P density 

EJ temperature of ambient fluid d Frti2/( 1 + Pr)“, n = l/4 for 
a velocity component in the x-direction 

u* potential flow velocity 
i = -0.198838 and n = l/6 for other 

V velocity component in the y-direction z, wall shear stress, ~(du/dy),=, 
X coordinate along the wedge surface Y stream function. 

The boundary conditions are and 

u(x, 0) = 0, v(x, 0) = 0 (4) 

u(x, a) = n,(x) (5) 

T(x, 0) = 7; for an isothermal wedge (6a) 

for a uniform-flux wedge 

(6b) 

where 

T(x, m) = T, (7) 

u,(x) = cxm, with m = @/(2 - /I) (8) 

is the velocity of the potential flow outside the 
boundary layer. 

We propose a parameter 

A = c Re’/’ 

= (Pr Re)‘j2/(1 + Pr) (9) 

where n = l/4 for the special case of separated wedge 
flow (/3 = -0.198838), otherwise n = l/6, to properly 
scale the variables for the similarity transformation 
of the boundary-layer equations (l)-(7). In terms of 
1, the similarity variable, the reduced stream function, 
and the dimensionless temperature are defined, re- 
spectively, as 

tl = (Y/a 

f(v) = Wl Y)/(a4 

(10) 

(11) 

e(v) = G’-- W(T, - Tm) (124 

for an isothermal wedge, or 

@ill) = A(T - T~)l(q~/k) (12b) 

for a uniform-flux wedge. The parameter and the 
variables are so defined that all the following appro- 
priate scales of the longitudinal velocity and the local 
Nusseit number for extremely large and vanishingly 
small Prandtl numbers [21] are satisfied: 

a _ Pr- ‘I3 u, (134 

Nu N Pr”3 Re”’ for Pr >> 1 (14a) 

and 

u - Ii, (1st 

Nu -, Pr’12Re”2 for Pr cc 1. (16) 

For the special case of separated wedge flow (B = 
-0.198838), the scaling laws (13a) and (14a) are 

replaced by 

u N PrKti2 u m (W 

Nu N Pr’/4 Re”* for Pr >> 1. (14b) 

The utilizing of the similarity variable and reduced 
stream function leads to the similarity transformation 
of the momentum equation (2) as 

Prf”’ + !f?-$Jfj”+ m[(1 + Pr)4” - f’f’] = 0 

(17) 
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with boundary conditions 

f(0) = 0, f’(0) = 0 (18) 

f’(W) = (1 + Pry”. (19) 

In addition, the velocity components are obtained as 

U/G = (1 + Pr)-‘“J’(q) (20) 

and 

u = -(a/x)1 
[ 
!!++++j- . 

1 
(21) 

It can be seen from equation (20) that the scaling laws 
(13) and (15) for the longitudinal velocity are satisfied 
respectively for very large and very small Prandtl 
numbers. 

Since the Prandtl number appears explicitly in 
equations (17) and (19), solutions off”(O) are expected 
to be a function of Prandtl number. However, the 
combination of the local friction coefficient 
Cr = 2~,/(pu~) and the square root of the local 
Reynolds number Re = umx/v, namely 

C,Re”* = 2(1 + Pr-‘)-l’Zf”(0) (22) 

is independent of the Prandtl number. For example, 
the computed values of f”(0) for /l = 0, from the 
numerical integration of equations (17) subject to 
boundary conditions (18) and (19) by using the Runge- 
Kutta scheme, vary from 33.20729 for Pr = 0.0001 to 
0.332090 for Pr = 10,000, while the derived values of 
CI Re’/* are in the range of 0.66410-0.66414. 

The energy equation (3) with boundary conditions 
(6) and (7) can be reduced to 

8”+ !?!pf@=O 

e(0) = 1, e(W) = 0 

for isothermal wedges; and 

(24a, b) 

W+ !!!++!+y&o (25) 

W(O) = -1, &co) = 0 (26a, b) 

for uniform-flux wedges. Although the Prandtl 
number does not appear explicitly in the reduced 
energy equation (23) or (25) and boundary conditions 
(24) or (26), the heat transfer results still depend on 
the Prandtl number since f and f' are functions of 
the Prandtl number. 

Equations (23) and (24) for the isothermal case or 
equations (25) and (26) for the uniform-flux case 
are integrated numerically in conjunction with the 
reduced momentum equation (17) and boundary 
conditions (18) as well as another boundary condition 
f”(0) = 0.5(1 + Pr-1)1/2(Cf Re”*) from equation (22). 
The values of C,Re”* are known as 0, 0.66412, 
1.51490 and 2.465175 for /I = -0.198838, 0, 0.5 and 
1, respectively. A fourth-order Runge-Kutta scheme 

Table 1. Similarity solutions of Null = -O’(O) for isother- 
mal wedges 

Pr /3 = -0.198838 j =0 /?=0.5 fi = I 

0 c221 0.538076 0.564190 0.651470 0.797885 
0.0001 0.528167 0.558777 0.647376 0.793809 

0.001 0.508230 0.547663 0.638768 0.785306 
0.01 0.455989 0.516758 0.614372 0.760987 
0.1 0.356835 0.449911 0.559225 0.705249 

1 0.261293 0.372722 0.493968 0.640326 
10 0.229354 0.343388 0.477039 0.631365 

100 0.224976 0.339208 0.482208 0.644454 
1000 0.224520 0.338766 0.486599 0.653023 

10000 0.224474 0.338722 0.488816 0.657181 

$23, 0.224469 0.224 0.338720 0.339 0.490753 - 0.660766 0.661 

Table 2. Similarity solutions of e(O) for uniform-flux wedges 

Pr /?= -0.198838 /I =0 /?=0.5 /I= I 

0 c221 1.12838 - 1.25331 
0.0001 1.15129 1.14545 1.18050 1.25953 

0.001 1.22509 1.18143 1.20127 1.27339 
0.01 1.44399 1.28721 1.26263 1.31408 
0.1 2.00751 1.55114 1.41813 1.41794 
0.3 2.42764 1.74043 1.52993 1.49170 
0.7 2.76231 1.88681 1.61402 1.54446 

1 2.88864 1.94108 1.64379 1.56170 
3 3.17705 2.06301 1.70336 1.58888 
7 3.29585 2.11245 1.71961 1.58763 

10 3.32611 2.12497 1.72148 1.58387 
100 3.39488 2.15333 1.71001 1.55170 

loo0 3.40219 2.15633 1.69734 1.53134 
10000 3.40292 2.15663 1.69084 1.52165 

cc ;2, 
3.40300 2.15667 1.68515 1.51340 

- I.513 

with variable integration step size is employed for the 
numerical solution. A convergence criterion of 10m6 
at the edge of the boundary layer was used in the 
computations. 

3. RESULTS AND DISCUSSION 

Similarity solutions of -W(O) for the case of iso- 
thermal wedges and those of 0(O) for uniform-flux 
wedges over the range of Pr = 10m4 to co are listed 
in Tables 1 and 2, respectively. Available closid form 
solutions for Pr + 0 and Pr -B cc [22, 231 are also 
presented in these tables for comparison. The heat 
transfer rate can be expressed in terms of local Nusselt 
number Nu = hx/k which is related to 0’(O) and e(O) 

by 

Null = -0’(O) 

for the isothermal wedges; and 

(27) 

Nu/3, = l/f?(O) (28) 

for the uniform-flux wedges. Variations of Null with 
Prandtl number over the range from 1O-4 to lo4 are 
illustrated in Figs. 1 and 2, respectively, for isothermal 
and uniform-flux cases. Asymptotic values of the 
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FIG. 1. Variations of heat transfer rates with Prandtl number 
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FIG. 2. Variations of heat transfer rates with Prandtl number 
for uniform-flux wedges. 

closed form solutions [22,23] for Pr -+ 0 or Pr + co, 
and present similarity solutions for Pr + co are also 
presented. As shown in these figures, the value of 
iVu/l for b < 0 decreases gradually from a constant 
C,, for the limiting case of vanishingly small Pr to 
another constant C, for the other limit of infinite Pr. 
Moreover, Null becomes nearly constant and is very 
close to the asymptotes for small and large Prandtl 
numbers. Consequently, equation (27) or (28) can 
be reduced to Nu(PrRe)-‘/’ = C, and Nu(Pr-1’3 
x Re- 1/2) = C,, respectively, for the limiting cases of 
Pr -+ 0 and Pr + a. For the special case of separated 
wedge flow (j = - 0.198838), Null = Nu(Pr-‘j4 
x Re- ‘/‘) = C, for Pr + co. It becomes quiteclear that 
the scaling laws (14) and (16) for the limiting cases are 
satisfied with the expression of Nu/k 

It is worth noting that Iz = (Pr Re)‘12/(1 + Pr)“’ is 

not the unique form which leads to Null and u that 
satisfy the scaling laws (13)-( 16) for the limiting cases. 
Indeed, these scaling laws are satisfied by using a 
general form of 1 = (PrRe)‘12/(l + PP)b or, equi- 
valently, 1 = Prli3 Re”‘/(l + Pr-“)‘, with ab = l/6. 

For a closer comparison, the present similarity 
solutions of Nu Re- ‘/* = -d’(O) and exact solutions 
of NuRe- li2 = (bA/B)/(2 - B)“* [6,8] over the range 
of Pr = 10-4-104 are listed in Table 3 for the iso- 
thermal wedges of /3 = -0.198838, 0, 0.5 and 1. The 
two solutions are identical even to the fifth significant 
digit for most of the cases. 

The similarity solutions of NuRe-‘/’ = a/e(O) for 
uniform-flux wedges are compared in Table 4 with 
NuRe-‘j2 = 1 /[(2 - B)“* e,(O)] of Chao and Cheema 
[22] over the range of Pr = 0.01-100. It is seen that 
these solutions are in excellent agreement. In addition, 
for the case of forward stagnation (jI = 1) the similarity 
solution of Null = l/1.51340 (Table 2) for Pr -+ co is 
in excellent agreement with the closed form solution 
of Nu Re- ‘/* Pr-1/3 = l/1.513 [22]. 

It is very interesting to note that the reduced energy 
equations (23) and (25), for isothermal boundary and 
uniform-flux surfaces, respectively, are identical for 
the case of forward stagnation (j = 1). Although 
boundary conditions (24a) and (26a) are different, the 
solutions of Null = -a@(O) for the isothermal surface 
and Nu/ii = a/6(0) for the uniform-flux boundary are 
almost the same. 

A simple correlation equation for forced convection 
heat transfer rates from wedges to fluids of any 
Prandtl number from 0 to infinity is proposed here 
as 

Nu/(Re Pr)“’ = A/(B + Pr) (29) 

with A = C, and B = (Cm/Co)““, where C, is the 
asymptotic value of Null as Pr + a~; and C,, is that 
of Null = Nu/(Re Pr)“* as Pr + 0. The values of C, 
and C, for various B are listed in Tables 1 and 2. 
Some of them can also be calculated from the available 
asymptotic equations [22,23-J. As has been mentioned, 
the exponent n = l/4 for the special case of separated 
wedge flow and n = l/6 for other cases. The corre- 
lation equation (29) is applicable to wedges of various 
configurations imposed with either an isothermal or 
a uniform-flux boundary. When compared with the 
exact solutions, the maximum error of this correlation 
equation is less than 10.6% for all the cases listed in 
Tables 1 and 2 over the range of Pr = 0-m. The 
maximum discrepancy between equation (29) and the 
exact solutions occurs at the Prandtl number that is 
of the same order as B. A more precise correlation 
equation is presently being studied. 

Representative dimensionless temperature distribu- 
tions are presented in Figs. 3 and 4, respectively, for 
the cases of isothermal plate and uniform-flux plate 
and for Pr = 0.001, 0.01, 0.1, 1 and 1000. The corres- 
ponding temperature distributions for the case of 
separated wedge flow are also demonstrated in Figs. 
5 and 6. These figures show that the dimensionless 
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Table 3. Comparison of the present results of NuRe -lit = -o@‘(O) with exact solutions of NuRe-“* = 

@blB)A2 - B) I’* in refs. [6, S] for isothermal wedges 

8 = -0.198838 fl=o j?=l 
Pr Present Exact Present Exact 

0.0001 0.5281%-2) 0.528150(-2) 
0.001 0.16067q-2) 0.160675(-1) 

0.01 0.454856(- 1) 0.4548X+( - 1) 
0.1 0.110184 0.110184 

1 0.219720 0.219720 
10 0.398252 0.398250 

100 0.709669 0.709668 
1000 1.26225 1.26225 

10000 2.24468 2.2446 

0.558768( - 2) 0.558773(-2) 
0.173157(- 1) 0.173156(-l) 
0.515902(- 1) 0.515884(- 1) 
0.140032 0.140029 
0.332058 0.332057 
0.728148 0.728136 
1.57186 1.57183 
3.38710 3.38707 
7.29742 7.29734 

Present 

0.793796(- 2) 
0.248294( - 1) 
0.75972q - 1) 
0.219505 
0.570466 
1.33880 
2.98634 
6.52914 

14.1583 

Exact 

0.793791( -2) 
0.248290(- 1) 
0.75972q - 1) 
0.219503 
0.570466 
1.33880 
2.98633 
6.52914 

14.158 

Table 4. Comparison of present results of Nu Re- liz = u/e(O) with Nu Re-‘I* = 1/[(2 - jI)*‘%,(O)] of Chao and 
Cheema [22] for uniform-flux wedges 

@=O 
Present ’ = o’5 ref. [22] 

/?=l 
pr Present ref. 2227 Present ref. r221 

0.01 0.775587( - 1) 0.775584 - 1) 0.7~8q - 1) 0.7~73( - 1) 0.75972~ - 1) 0.759723( - 1) 
0.1 0.200655 0.200654 0.219476 0.219475 0.219505 0.219501 

1 0.458971 0.458970 0.541978 0.541979 0.570467 0.570467 
10 0.997888 0.997879 1.23178 1.23180 1.33880 1.33887 

100 2.15196 2.15194 2.70988 2.71018 2.98634 2.98784 

r=0.001,0.01,0.1,1,1000 

FIG. 3. Dimensionless temperature profiles for an isothermal flat plate. 

temperature profiles are similar for all fluids, especially infinity. As illustrated by the cases of wedges of various 
forPr>l. configurations, the similarity equations resulting from 

4. CONCLUSIONS 
suitably defined similarity variables are simple in form 
and can be integrated readily to give solutions that 

A similarity solution method was proposed in this are identical to the reported exact solutions for 
paper for the forced convection heat transfer from isothermal wedges. This solution method is particu- 
isothermal or uniform-flux surfaces to fluids of any larly valuable for the cases of which the exact solutions 
Prandtl number from vanishingly small values to are not available. 
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FIG. 4. Dimensionless temperature profiles for a uniform-flux plate. 

Pr=0.001,0.01,0.1,1,1000 

0 

FIG. 5. Dimensionless temperature profiles for separated wedge flow, isothermal case. 
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SOLUTIONS DE SIMILITUDE DE LA CONVECTION THERMIQUE LAMINAIRE, 
FORCEE SUR DES DIEDRES POUR DES FLUIDES A NOMBRE DE PRANDTL 

QUELCONQUE 

R&u&-On propose une mdthode de resolution par similitude qui fournit des solutions tres pm&es pour 
la convection thermique, laminaire, for&e sur des surfaces soit isothermes soit a flux uniforme, avec des 
fluides a nombre de Prandtl quelconque. On traite avec cette methode le cas des diMres isothermes ou a 
flux uniforme, La methode est bas&e sur l’introduction d’un parambtre I = (Pr Re)“*/(l+ Pr)“6 pour 
dtfinir convenablement les variables de similitude. Les equations qui en resultent sont simples et peuvent 
itre intigrees directement, en utilisant la mithode Runge-Kutta, pour donner les solutions identiques aux 
solutions exactes connues, dans le domaine de nombre de Prandtl entre les valeurs proche de zero et l’infini. 
On presente aussi une fomwle pour un ditdre et un nombre de Prandtl quelconques. Cette mtthode de 

resolution est particulitrement utile lorsque les solutions exactes ne sont pas disponibles. 

AHNLICHKEITSLOSUNGEN FUR DEN WARMEOBERGANG BEI LAMINARER, 
ERZWUNGENER KONVEKTION VON KEILEN AN FLUIDE MIT BELIEBIGER 

PRANDTLZAHL 

Zusammenfassung-Dieser Aufsatz schllgt eine Ahnlichkeitsmethode vor, die sehr genaue Liisungen fur 
den Wlrmeiibergang bei laminarer erzwungener Konvektion von einer isotherm& oder gleichfiirmig 
beheizten OberIlache an Fluide mit beliebiaer Prandtl-Zahl liefert. In dieser Arbeit wird die Ahn- 
lichkeitsmethode beispielhaft mit beiden Randbedingungen an keilfiirmigen Kijrpem demonstriert. Das 
Verfahren basiert auf der Einfiihrung eines Parameters 1 = (PrRe)“‘/(l +Pr)li6, urn die Ahn- 
lichkeitsvariablen korrekt zu definieren. Die resultierenden jlhnlichkeitsgleichungen haben eine einfache 
Form und konnen ohne weiteres mit dem Runge-Kutta-Verfahren integriert werden. Es ergeben sich 
Ldsungen, die fast identisch mit angegebenen exakten Liisungen sind, und zwar filr den Bereich von 
verschwindend kleinen bis zu unendlich groben Prandtl-Zahlen. Eine einfache Korrelationsgleichung fur 
beliebige Keilform und beliebige Prandtl-Zahl wird ebenfalls vorgestellt. Diese Liisungsmethode ist dann 

besonders wertvoll, wenn keine exakte Liisungen verfiigbar sind. 

ABTOMOAEJIbHbIE PEIBEHMIl 3AAA’Hi flJI5I TEl-IJIOOTflAHM OT KJIMHA K 
XMAKOCTII C fIPOH3BOJIbHbIM HHCJIOM fIPAHfiTJIR AJIJI JIAMMHAPHOH 

BbIHYXAEHHOH KOHBEKHHM 

AiinoTaunn-npe&noneH MeTofinonyreHwR BecbMaToSHbIx aBToMonenbHbIx pelueHHii3anawianaTen- 

noOTnaw ne60 or W30TepMWIeCKOi rIoBepxHocTB HJIH oT~~B~~~HOCTWCO~HO~OPH~IM nOToKoM Tenna 

K )KRL,KOCTIIM C npOH3BOnbHbIM WWIOM npaHATnSI IlpH JIaMBHapHOii BbIHyXU,eHHOti KOHBCKUHA. B 
Ka'lCCTBe "pHMepa IIpHBeneH Cny'Iaii H30TepMWIeCKOrO KnAHa II KnHHa C OL,HOpOnHbIM TelUIOBbIM 

IIoTOKOM. MeTon 0cHoBaH Ha BBenewiki napaMeTpa nps HaAne*auleh4 ebI6ope anToMoAenbHbIx nepe- 

MeHHbIX. nOny'ieHHbIe ypaBHeHHSI IIpOCTbI II0 +OpMe W nerK0 BHTerpHpyloTCn MeTOnOM PyHre-KyTTa; 

"Ony'IeHbI peIUe"HK, KOTOpbIe "O'ITA COBIIaLlaIOT C r(3BeCTHbIMW TO'IHbIMH pU"eHW4MH B nHana3OHe 

wcen IlpaHnTnn 0T npenenbH0 rdanbfx no 6eCKOHeWOCTH. flpencTaeneH0 npocToe KpwepsanbHoe 

ypaBHeHtiennn npoti3BonbHoro yrna pacTBopa KnNHa )1 wcna IlpasnTna.TaKoii xe nonxonoco6e~tio 


